Longitudinal Equations of Motion^{Sa1}

The longitudinal equations of motion for an electron in a storage ring are

$$\frac{ds}{dt} = -\alpha \epsilon c \,, \qquad \& \qquad \frac{d\epsilon}{dt} = \frac{eV_{RF}(s) - U(\epsilon)}{E_0 T_0} \,, \label{eq:delta_t}$$

where $\varepsilon \equiv \Delta p/p$ and s are the momentum deviation and distance of the electron from the synchronous particle respectively. Note that s is positive when an electron arrives at each azimuth ahead of the synchronous particle. If the RF voltage, V_{RF} , is assumed to be sinusoidal the following quantities are of interest.

1. Synchronous Phase, ϕ_s :

$$\phi_{s} = \sin^{-1} \left[\frac{U_{0}}{eV_{RF}} \right] = \sin^{-1} \left[\frac{1}{q} \right]$$

2. RF Acceptance, ε_{RF} :

$$\epsilon_{RF} = \pm \left[\frac{2U_0}{\pi \alpha hE} \left\{ \sqrt{q^2 - 1} - \cos^{-1}(1/q) \right\} \right]^{1/2}$$

3. Synchrotron Tune, v_s :

$$v_{s} = \frac{\Omega_{s}}{\omega_{0}} = \left[\frac{\alpha h \cos \phi_{s}}{2\pi} \frac{eV_{RF}}{E}\right]^{1/2}$$

4. Bunch Length, σ_L :

$$\sigma_{L} = \frac{\alpha c}{\Omega_{s}} \sigma_{E} = \left[\frac{2\pi \alpha h c^{2}}{\omega_{RF}^{2} \cos \phi_{s}} \frac{E}{eV_{RF}} \right]^{1/2} \sigma_{E}$$